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ABSTRACT

We present progress on the development of a Discontinuous Galerkin (DG) method for solving the
non-relativistic, multi-group two-moment model for neutrino transport. The method — ultimately targeted
at simulation of neutrino transport in core-collapse supernovae — includes the use of curvilinear
coordinates and tabulated microphysics (i.e., nuclear equation of state and weak interaction rates) to model
neutrino-matter coupling. In this report, we provide algorithm details and present results from an extensive
set of benchmark problems in one spatial dimension. The algorithms have been implemented in the Toolkit
for High-Order Neutrino-Radiation Hydrodynamics (thornado), and Fortran code used to generate the
results has been made available to the public through GitHub.∗

1. INTRODUCTION

The explosion of a massive star (i.e., with mass & 8 solar masses) in a core-collapse supernova (CCSN) is
initiated by the collapse of its iron or oxygen-neon-magnesium core, the product of millions of years of
stellar evolution. The collapse proceeds to densities exceeding the density of nucleons in the atomic
nucleus, at which point the inner core becomes incompressible, “rebounds," and launches a shock wave
into the outer stellar core. This shock wave ultimately propagates through the outer layers of the star and
disrupts it in a CCSN explosion. However, before this, the shock wave stalls in the outer core, due to
energy losses from neutrino emission and dissociation of heavy nuclei, and turns into an accretion shock.
Exactly how the shock wave is revived remains a central question in CCSN theory. After core bounce,
about 1053 ergs of energy in the form of neutrinos and antineutrinos of all three flavors (i.e., electron,
muon, and tau neutrinos) is emitted from the proto-neutron star (PNS) at the center of the explosion. Early
simulations [e.g., Bethe and Wilson, 1985] have shown that energy from these neutrinos can be deposited
behind the shock and revive it, and this neutrino-reheating mechanism is central to current CCSN theory.
See, e.g., Mezzacappa [2005], Janka [2012], Burrows [2013], Müller [2016], for comprehensive reviews.

Today, simulations play an indispensable role in disentangling details of the CCSN explosion mechanism,
and in connecting observables to physical processes in the explosion. Observables include nucleosynthetic
yields, and optical and neutrino signals. Simulations may also play a role in the future detection and
interpretation of gravitational wave signals. As such, CCSNe are multi-messengers, and CCSN models are
quintessentially multi-physics — involving all the known fundamental forces of nature. However, the
computational cost of CCSNe models is dominated by solving equations describing the transport of
neutrinos and their interaction with the stellar fluid. Neutrinos diffuse away from the PNS, become
semi-transparent, and eventually free-streaming — carrying information about the physical conditions in
the exploding star. One of the principal goals of a CCSN model is to compute the lepton and
four-momentum exchange between the neutrinos and the stellar fluid.

Net energy transfer from neutrinos to the stellar fluid occurs in the layer between the so-called gain radius
and the shock — the heating region. Importantly, in the heating region, the neutrino mean free path
exceeds other characteristic length scales (the Knudsen number exceeds unity), and non-equilibrium effects
may become important. To capture non-equilibrium effects, a kinetic description is required, where the
neutrinos are described by the distribution function f (ω, ε, x, t), a phase space density governed by the
Boltzmann equation. The distribution function gives, at time t, the number of neutrinos at spatial position
x ∈ R3, with energy ε ∈ R+, propagating in direction ω ∈ S2 — a seven-dimensional function.

∗https://github.com/ECP-Astro/thornado_mini
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In this work, we seek to develop efficient methods to model neutrino transport in CCSN simulations. On
the one hand, the need for high spatial resolution and unconstrained spatial dimensionality to follow
important fluid instabilities as the explosion develops makes direct solution of the Boltzmann equation a
formidable computational challenge. On the other hand, neutrino heating rates are particularly sensitive to
the neutrino energy distribution, which requires retention of the energy dimension of momentum space.
Therefore, to balance manageable computational cost with required physical fidelity, the number of
unknowns can be reduced by a truncated moment expansion of the angular dimensions of momentum
space; i.e., by solving for a finite number of angular moments of the distribution function

M(ε, x, t) =

∫
S2

f (ω, ε, x, t) w(ω) dω, (1)

where w are momentum space angular weighting functions. The two-moment model [e.g., Anderson and
Spiegel, 1972] is obtained by truncating the moment expansion at the level of the so-called first order
moments (akin to an expansion in spherical harmonics up to degree ` = 1), so that the unknown moments
are the spectral particle density J and particle fluxH — a two-moment model;M = (J ,H)T . This is the
basic system we will consider. Note that the moments depend on the neutrino energy, spatial position, and
time, and are governed by a system of nonlinear moment equations.

The solution to a truncated moment model is confronted with the challenge of specifying higher order
moments (e.g., radiation stresses), which appear in the governing moment equations. In this work, the
solution to this closure problem is approximated by relating these higher order moments to the evolved
moments through relatively simple analytic expressions [cf. Minerbo, 1978, Levermore, 1984,
Cernohorsky and Bludman, 1994]. Obviously, this approach limits the fidelity of the model when the
angular distribution of the radiation field is highly anisotropic. However, this shortcoming can (at
additional computational cost) be alleviated by extending the moment expansion to include more moments,
or by solving the Boltzmann equation directly, in regions where higher fidelity is needed. In this approach,
the two-moment model becomes a component in a multi-model hierarchy, and the developments described
here can be fully leveraged. We note that this multi-model approach introduces additional challenges
associated with model coupling.

The neutrino-radiation hydrodynamics system supports three important time scales: (i) the radiative time
scale τr, governed by the speed of light; (ii) the fluid time scale τf, governed by the fluid flow and sound
speeds; and (iii) the collision time scale τc, governed by the mean time between neutrino-matter
interactions. In the CCSN environment, the flow and sound speeds approach significant fractions of the
speed of light, while τc is very short in the dense PNS. Thus, we have the time scale ordering: τc � τr . τf.
We will not resolve the short timescales imposed by collisions in the PNS, but integrate the stiff collision
term with implicit methods. Streaming terms will be integrated in time using explicit methods. This
motivates the use of Semi-Implicit (SI), or Implicit-Explcit (IMEX), time integration methods (e.g., Minion
[2003], Pareschi and Russo [2005], Chertock et al. [2015]) for optimal balance between stability and
efficiency. Specifically, we will use Semi-Implicit Runge-Kutta (SIRK) methods, similar to those discussed
by Chertock et al. [2015]. This combination of explicit and implicit methods, as opposed to fully implicit
methods, avoids the need to solve large, distributed systems of algebraic equations for each time step.

To solve the neutrino transport equations we discretize the moment equations in energy-position space
using high-order Discontinuous Galerkin (DG) methods (e.g., Cockburn and Shu [2001], Hesthaven and
Warburton [2008]). DG methods combine elements from both spectral and finite volume methods, and are
an attractive option for solving hyperbolic partial differential equations (PDEs). They achieve high-order
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accuracy on a compact stencil; i.e., data is only communicated with nearest neighbors, regardless of the
formal order of accuracy. This leads to a high computation to communication ratio, and favorable parallel
scalability on heterogeneous architectures has been demonstrated [Klöckner et al., 2009]. DG methods can
be used in combination with hp-adaptivity [Remacle et al., 2003], where, in addition to grid refinement
with AMR, the local polynomial degree can be chosen differently, and independently, in different cells.
They can easily be applied to problems involving curvilinear coordinates, which is beneficial in numerical
relativity [Teukolsky, 2016]. Importantly, DG methods, as opposed to, e.g., finite volume methods, exhibit
favorable properties when collisions are included. Specifically, without modification, they recover the
correct asymptotic behavior in the diffusion limit, characterized by frequent collisions [e.g., Larsen and
Morel, 1989, Adams, 2001, Guermond and Kanschat, 2010]. The DG method was introduced in the 1970s
by Reed and Hill [1973] to solve the neutron transport equation, and has undergone remarkable
developments since then [see, e.g., Shu, 2016, and references therein]. It has only recently received
attention from the computational astrophysics community [e.g., Radice and Rezzolla, 2011, Schaal et al.,
2015, Wu and Tang, 2017], mainly to solve the Euler equations for ideal hydrodynamics, but also to solve
Einstein’s field equations [Teukolsky, 2016]. DG methods have also been considered for the neutrino
transport problem in CCSN [e.g., Radice et al., 2013, Endeve et al., 2015].

The ultimate goal of this work is to develop genuinely multi-dimensional, high-order numerical methods
within the DG framework for solving the equations of neutrino-radiation hydrodynamics, that include
relativity and full nonlinear coupling to the stellar fluid through a complete set of weak interactions, to
enable high fidelity simulations of CCSN explosions. This is a formidable challenge, and, in our opinion,
this goal is best achieved in incremental steps. The work reported here is the initial step toward this goal,
where we present developments of a DG method for solving the non-relativistic, multi-group two-moment
model in one spatial dimension (but sufficiently general to accommodate Cartesian, spherical, and
cylindrical spatial coordinates). We have tabulated a basic set of neutrino-matter interactions (electron
capture and elastic scattering on nucleons and nuclei, and neutrino-electron scattering, as described by
Bruenn [1985]), using a tabulated nuclear equation of state (EoS), and we include lepton and energy
exchange with the stellar fluid. The algorithms have been implemented in the Toolkit for High-Order
Neutrino-Radiation Hydrodynamics (thornado), and we provide a limited public release of the algorithms
on GitHub (https://github.com/ECP-Astro/thornado_mini).

This report is organized as follows: We describe the non-relativistic, multi-group two-moment model we
consider in Section 2. We detail the spatial discretization of the two-moment model using the DG method
in Section 3. The time integration methods used for problems with and without collisions are described in
Section 4. Limiting techniques to control nonphysical oscillations and to prevent nonphysical states are
described in Section 5. We provide details on the tabulated opacities in Section 6. Results from an
extensive set of benchmark problems (in Cartesian, spherical, and cylindrical spatial coordinates), covering
streaming and collision dominated limits, but with analytic opacities are presented in Section 7. The
neutrino-matter coupling method and results from two tests using tabulated opacities are discussed in
Section 8. Finally, we summarize and discuss next steps in Section 9.
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2. TWO-MOMENT MODEL FOR NEUTRINO TRANSPORT

Here we give a description of the two-moment model to be solved with the DG method.

2.1 BASIC MATHEMATICAL MODEL

For general curvilinear spatial coordinates {xi}, the two-moment model for radiation transport takes the
form [see, e.g., Shibata et al., 2011, Cardall et al., 2013, for fully general relativistic treatments]

1
√
γ

∂

∂t

( √
γJ

)
+

1
√
γ

∂

∂xi

( √
γH i

)
= χ̃

(
J0 − J

)
+

(
4π − J

) ∫
R+

RIn(ε, ε′)J(ε′) dVε′ − J
∫
R+

ROut(ε, ε′)
(
4π − J(ε′)

)
dVε′ , (2)

1
√
γ

∂

∂t

( √
γH j

)
+

1
√
γ

∂

∂xi

( √
γK i

j

)
=

1
2
K ik ∂γik

∂x j − κH j

−H j

∫
R+

[
RIn(ε, ε′)J(ε′) + ROut(ε, ε′)

(
4π − J(ε′)

) ]
dVε′ , (3)

where J ,H i, and K i j are defined as angular moments of a positive neutrino distribution function
f (ω, ε, x, t) {

J , H i, K i j }(ε, x, t) =

∫
S2

f (ω, ε, x, t)
{
1, li, li l j} dω. (4)

Here, {li} are components of a unit three-vector proportional to the neutrino three-momentum p = ε l. (We
adopt the Einstein summation convention and let repeated Latin indices run from 1 to 3.) In a kinetic
description, neutrinos are described by the phase space distribution function f , and the momentum space
coordinates used here are the neutrino energy ε, and the angles ϑ and ϕ (describing the neutrino
propagation direction relative to a local orthonormal basis). In forming the angular moments in Eq. (4), the
integrals extend over the unit sphere

S2 =
{
(ϑ, ϕ) | ϑ ∈ [0, π), ϕ ∈ [0, 2π)

}
. (5)

The angular moments in Eq. (4) are related to the neutrino energy density, momentum density, and stress
(by εJ , εH i, and εK i j, respectively, see, e.g., Cardall et al. [2013]). They are functions of the neutrino
energy ε, spatial position {xi}, and time t.

To model neutrino-matter interactions, we include emission and absorption, (isotropic) elastic scattering on
nucleons and nuclei, and neutrino-electron scattering (NES). On the right-hand sides of Eqs. (2) and (3),
χ̃(ε,U) and κ(ε,U) = χ̃(ε,U) + σ(ε,U) are absorption and transport (absorption plus elastic scattering)
opacities, respectively. The absorption opacity χ̃ is corrected for stimulated absorption [cf. Mezzacappa
and Bruenn, 1993a]. The NES rates RIn and ROut are obtained by expanding the full kernels in a Legendre
series, retaining only the isotropic part [see, e.g., Cernohorsky, 1994], and the integrals extend over all
energies R+ = {ε | ε ∈ [0,∞)}. The energy volume element is dVε = ε2dε. The opacities depend on the
neutrino energy and the local thermodynamic state of the fluid U = (ρ,T,Ye)T , where ρ is the (baryon)
mass density, T the temperature, and Ye the electron fraction. For simplicity we consider a single neutrino
species (electron neutrinos), and we use opacities given by Bruenn [1985]; see Section 6. for further
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details. In Eq. (2), the equilibrium density J0 = 4π f0(ε,U) is computed from the angular moment of the
isotropic Fermi-Dirac distribution

f0(ε,U) =
1

e(ε−µν)/kBT + 1
, (6)

where kB is Boltzmann’s constant, and µν = µp − µn + µe is the neutrino chemical potential in weak
equilibrium. (The chemical potentials of protons, neutrons, and electrons are denoted by µp, µn, and µe,
respectively.)

The model given by Eqs. (2) and (3) is non-relativistic (i.e., it does not include effects due to strong
gravitational fields or interactions with a moving fluid), but is expressed in terms of curvilinear coordinates
through the spatial metric tensor γi j, which gives squared infinitesimal line-element

ds2
x = γi j dxi dx j, (7)

where γi j are the spatial components of the coordinate basis metric tensor. We will make two simplifying
assumptions: the metric tensor is (1) diagonal and (2) time-independent. Specifically we assume the
following diagonal form

γi j = diag
[
γ11, γ22(x1), γ33(x1, x2)

]
, (8)

which is sufficiently general to accommodate Cartesian, cylindrical, and spherical polar coordinates (see
Table 1 and Appendix 8.3). Moreover, γ is the determinant of the metric tensor, and

√
γ =
√
γ11γ22γ33.

The inverse of the spatial metric is denoted γi j, so that γikγk j = δi
j. We can use the spatial metric to raise

and lower indices on spatial vectors and tensors; e.g.,H j = γ jkH
k.

The two-moment system contains the higher order moments K i j — the symmetric stress tensor. In order to
form a closed system of equations, the components of the stress tensor must be related to the lower order
moments through a closure procedure. Following Levermore [1984], we write

K i
j =

1
2

[
(1 − ψ) δi

j + (3ψ − 1) hi h j
]
J , (9)

where ψ is the Eddington factor, hi = H i/H , andH =
√
HiH

i. We also define the flux factor h = H/J ,
and use the analytic expression for the Eddington factor [Minerbo, 1978] given by

ψ(h) =
1
3

+
2
3

[
h2 (

3 − h + 3h2 )
/5

]
, (10)

which approximates the low occupancy limit of the maximum entropy closure for Fermi-Dirac particles
given by Cernohorsky and Bludman [1994]. Specifically, we have ψ(0) = 1/3 (diffusion limit) and
ψ(1) = 1 (streaming limit).

2.2 TWO-MOMENT MODEL AS A SYSTEM OF CONSERVATION LAWS WITH
SOURCES

For the forthcoming description it is useful to write the moment equations in a more compact form. To this
end, we define the geometry sources in Eq. (3) by

G j =
1
2
K ik ∂γik

∂x j . (11)
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Table 1. Relevant metric functions for Cartesian, Cylindrical, and Spherical coordinate systems.

Coordinates x1 x2 x3 γ11 γ22 γ33
√
γ 1

γ22

∂γ22
∂x1

1
γ33

∂γ33
∂x1

1
γ33

∂γ33
∂x2

Cartesian x y z 1 1 1 1 0 0 0
Cylindrical R z φ 1 1 R2 R 0 2/R 0
Spherical r θ φ 1 r2 r2 sin2 θ r2 sin θ 2/r 2/r 2 cot θ

Specifically, using the time-independent metric tensor in Eq. (8) and writing in terms of K i
j, the

components are

G1 =
1
2

(
K2

2
1
γ22

∂γ22

∂x1 +K3
3

1
γ33

∂γ33

∂x1

)
, G2 =

1
2
K3

3
1
γ33

∂γ33

∂x2 , and G3 = 0. (12)

(Explicit expressions for metric functions appearing in the geometry sources are listed in Table 1.) Then,
by defining the vector of evolved momentsM =

(
J , H

)T , the vector of geometry sources
G(M) =

(
0, G1, G2, G3

)T , the vector of collision sources C(M) =
(
χ̃ (J0 − J) +LNES, −(κ + κNES)H

)T ,
and the flux vectors F i(M) =

(
H i, K i

1, K
i
2, K

i
3
)T , we write the system of equations in compact form

1
√
γ

∂

∂t

( √
γM

)
+

1
√
γ

∂

∂xi

( √
γF i(M)

)
= G(M) + C(M). (13)

Here, LNES and κNES represent the integral operators appearing in Eqs. (2) and (3), respectively. Eq. (13)
forms the basis for developing DG methods for neutrino transport.

3. DISCONTINUOUS GALERKIN DISCRETIZATION

In the DG method, the moments are approximated by a local expansion of the form

MDG(ε, x, t) =

N∑
i=1
Mi(ε, t) `i(x), (14)

where basis functions `i(x), which we will take to be polynomials, belong to a function space denoted Vk

and have local support in a computational cell or element denoted by K. Here we do not consider
relativistic effects, which would lead to energy advection terms in the moment equations [cf. Cardall et al.,
2013]. Thus, we treat the neutrino energy simply as a parameter, and do not introduce an expansion in the
energy dimension.

Several books and review articles on the DG method are now available [see, e.g., Cockburn and Shu, 2001,
Hesthaven and Warburton, 2008, Shu, 2016, and references therein], and we will not go into too much
detail here. However, we review some key concepts to introduce notation, and, since multiple ‘flavors’ of
the DG method have emerged, we emphasize specific choices in our implementation. Specifically, we have
implemented a nodal DG method where a tensor product of Legendre-Gauss quadrature points define the
interpolation nodes within an element (using Lagrange polynomials). Furthermore, we let these
Legendre-Gauss quadrature nodes also define the integration points to evaluate integrals in the DG method
using the Legendre-Gauss quadrature rule. This approach, called the spectral-type collocation DG method
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by Bassi et al. [2013], leads to particularly simple expressions, and offers computational advantages in
quadrature evaluations.

3.1 BASIC PRINCIPLES OF THE DG METHOD

We divide the computational domain D into a disjoint union T of open elements K, so that D = ∪K∈T K.
We require that each element is a d-dimensional box in the logical coordinates; i.e.,

K = { x : xi ∈ Ki := (xi
L, x

i
H), | i = 1, . . . , d }, (15)

with the surface elements denoted K̃i = ⊗ j,iK j. We use VK to denote the proper volume of the element

VK =

∫
K

dV, where dV =
√
γ

d∏
i=1

dxi. (16)

We also define x = {x̃i, xi} and ∆xi = xi
H − xi

L.

We let the approximation space for the DG method, Vk, be constructed from the tensor product of
one-dimensional polynomials of maximal degree k. Note that functions in Vk can be discontinuous across
element interfaces. The semi-discrete DG problem is to findMDG ∈ V

k (which approximatesM in
Eq. (13)) such that [cf. Cockburn and Shu, 2001]

∂t

∫
K
MDG v dV +

d∑
i=1

∫
K̃i

( √
γ F̂

i
(MDG) v

∣∣∣
xi

H
−
√
γ F̂

i
(MDG) v

∣∣∣
xi

L

)
d x̃i

−

d∑
i=1

∫
K
F

i(MDG)
∂v
∂xi dV =

∫
K
G(MDG) v dV +

∫
K
C(MDG) v dV, (17)

for all v ∈ Vk and all K ∈ T .

To connect the elements in Eq. (17), F̂
i
(MDG) is a numerical flux approximating the flux on the ith surface

of K. For this purpose we define the numerical flux function f i, which evaluates the numerical flux given
values from both sides of an element interface; i.e.,

F̂
i
(MDG) = f i(MDG(xi,−, x̃i),MDG(xi,+, x̃i)), (18)

where superscripts −/+, e.g., in the arguments ofMDG(xi,−/+, x̃i), indicate that the function is evaluated to
the immediate left/right of xi. For example, the simple Lax-Friedrichs (LF) flux, which we have
implemented, is given by

f LF,i(M−,M+) =
1
2

(
F

i(M−) + F i(M+) − αi (M+
−M

− )
)
, (19)

where αi = ||eig
(
∂F i/∂M

)
||∞ is the largest eigenvalue of the flux jacobian. For classical neutrinos, which

propagate at the speed of light, we can take αi = 1 (i.e., the global LF flux). We have also implemented the
Harten-Lax-van Leer (HLL) flux [Harten et al., 1983]

f HLL,i(M−,M+) =
α+,iF i(M−) + α−,iF i(M+) − α−,iα+,i(M+

−M
− )

α−,i + α+,i , (20)
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where α−,i and α+,i are estimates for the largest (in absolute value) wave speed for left-moving and
right-moving waves, respectively.

The approximation space Vk contains the constant functions, and the choice v = 1 in Eq. (17) gives

∂tMK +
1

VK

d∑
i=1

∫
K̃i

( √
γ F̂

i
(MDG)

∣∣∣
xi

H
−
√
γ F̂

i
(MDG)

∣∣∣
xi

L

)
d x̃i = GK + CK, (21)

where we have defined the volume averages

MK =
1

VK

∫
K
MDG dV, GK =

1
VK

∫
K
G(MDG) dV and CK =

1
VK

∫
K
C(MDG) dV. (22)

This illustrates how the DG method evolves the cell average (similar to finite volume methods).

3.2 FURTHER DETAILS ON THE DG DISCRETIZATION OF THE MOMENT
EQUATIONS

Here we provide further details on the DG method in order to arrive at the equations that are actually
implemented in our code. We start by introducing some notation, defining the polynomial expansion for
MDG, and the quadrature rules used to evaluate the integrals in Eq. (17). Then, using these rules, we
provide explicit expressions for each of the terms in Eq. (17).

3.2.1 Notation and Definitions

In each element K, we use a nodal representation in the conserved variablesM; i.e.,

M(ε, x, t) ≈MDG(ε, x, t) =

N∑
i=1
Mi(ε, t) `i(x), (23)

where `i(x) ∈ Vk are basis functions. (In the following, to simplify the notation, we will suppress the
dependence on ε of the moments.) Specifically, we use one-dimensional Lagrange polynomials `i(x) to
construct the multidimensional representation, where

`i(η) =

N∏
j=1
j,i

η − η j

ηi − η j
. (24)

The basis polynomials are defined on the local reference element with coordinates
η ∈ I = [ηL, ηH] = [−1/2, 1/2]. The global coordinates are then given by x(η) = xc + η∆x, where the center
value is given by the arithmetic mean xc = (xL + xH)/2. In (17), we also need to evaluate derivatives of the
basis functions. For Lagrange polynomials, these are given by

∂`i

∂η
(η) =

N∑
k=1
k,i

1
ηi − ηk

N∏
j=1
j,k

η − η j

ηi − η j
. (25)
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To simplify expressions, we have introduced compact notation. Let i = {i1, . . . , id} be a multi-index, and
define the multidimensional polynomial as `i(x) =

∏d
k=1 `ik (xk). From the property `i(x j) = δi j we have the

corresponding multidimensional version `i(x j) = δi j, so thatMDG(xi, t) =Mi(t); i.e., the expansion
coefficients in Eq. (23) represent the conserved variables defined in the nodes xi. We then have

N∑
i=1
Mi(t) `i(x) =

N∑
i1=1

. . .

N∑
id=1

Mi1...id (t) `i1(x1) . . . `id (xd). (26)

To evaluate the integrals in Eq. (17), we introduce numerical quadratures. First we define the
one-dimensional N-point quadrature Qi

N : C0(Ii)→ R with abscissas {ηq}
N
q=1 and weights {wq}

N
q=1,

normalized such that
∑N

q=1 wq = 1. (For example, the N-point Legendre-Gauss quadrature, which we will
use, integrates polynomials of degree ≤ 2N − 1 exactly.) If P(x) is such a polynomial, we have

1
∆x

∫
K

P(x) dx =

∫
I

P(η) dη = QN
[
P
]
≡

N∑
q=1

wq P(ηq). (27)

Multi-dimensional integrals are evaluated by tensorization of one-dimensional quadratures. For volume
integrals, we define QN : C0(I)→ R as the tensor product of one-dimensional N-point Legendre-Gauss
quadrature rules QN = ⊗d

i=1Qi
N with abscissas {ηq}

N
q=1 and weights {wq}

N
q=1. Here, q = {qi}

d
i=1 ∈ N

d,
ηq = {η1

q1
, . . . , ηd

qd
}, and wq = wq1 . . .wqd , so that the multi-dimensional volume integral is evaluated as

1
|K|

∫
K

P(x) dx =

∫
I

P(η) dη = QN
[
P
]
≡

N∑
q=1

wq P(ηq), (28)

where P : Rd → R. Similarly, for surface integrals, we define Q̃i
N : C0(Ĩi)→ R as the tensor product

Q̃i
N = ⊗ j,iQ

j
N and denote the abscissas with {η̃i

q̃i
}Nq̃i=1 and the weights with {wq̃i}

N
q̃i=1, respectively. Here, the

multi-index is q̃i = {q j} j,i ∈ N
d−1, η̃i

q̃i
= {η

j
q j} j,i, and wq̃i =

∏
j,i wq j . Surface integrals are then evaluated

as
1
|K̃i|

∫
K̃i

P(xi, x̃i) d x̃i =

∫
Ĩi

P(xi, η̃i) dη̃i = Q̃i
N
[
P
]
≡

N∑
q̃i=1

wq̃i P(xi, η̃i
q̃i

). (29)

We now use these definitions to furnish explicit expressions for the discretized moment equations.

3.2.2 Explicit Expressions

Inserting (23) into (17), with v(x) = `k(x) and the quadratures defined above, we obtain

∂t

∫
K
MDG v dV ≈ wk

√
γk ∂tMk |K| (30)

for the time derivative term, where |K| =
∏d

i=1 ∆xi. Note that the integration is approximate since we use
the Legendre-Gauss quadrature rule with the nodal points given by the expansion in Eq. (23). This leads to
a diagonal mass matrix, and simplifies the implementation. Similarly, we obtain∫

K
G(MDG) v dV ≈ wk

√
γkG(Mk) |K| and

∫
K
C(MDG) v dV ≈ wk

√
γk C(Mk) |K| (31)

9



for the source terms. For the surface integrals, we obtain, e.g.,∫
K̃i

√
γ F̂

i
v|xi

H
d x̃i ≈ wk̃i

√
γ(xi

H, x̃
i
k̃i

) F̂
i
(xi

H, x̃
i
k̃i

) `ki(ηH) |K̃i|, (32)

where |K̃i| =
∏

i, j ∆x j. (Note that we do not use the Einstein summation convention in the numerical
expressions presented in this section. Summation over indices will be explicitly indicated.) Finally, the
‘volume terms’ become∫

K
F

i ∂v
∂xi dV ≈ wk̃i

N∑
qi=1

wqi

√
γ(xi

qi
, x̃i

k̃i
)F i(xi

qi
, x̃i

k̃i
)
∂`ki

∂ηi (ηi
qi

) |K̃i|. (33)

Combining the terms and dividing through by wk
√
γk |K| we obtain the semi-discrete form of the moment

equations

∂tMk = −
1
√
γk

d∑
i=1

1
wki∆xi

( √
γ(xi

H, x̃
i
k̃i

) F̂
i
(xi

H, x̃
i
k̃i

) `ki(ηH) −
√
γ(xi

L, x̃
i
k̃i

) F̂
i
(xi

L, x̃
i
k̃i

) `ki(ηL)
)

+
1
√
γk

d∑
i=1

1
wki∆xi

N∑
qi=1

wqi

√
γ(xi

qi
, x̃i

k̃i
)F i(xi

qi
, x̃i

k̃i
)
∂`ki

∂ηi (ηi
qi

) +G(Mk) + C(Mk). (34)

Eq. (34) provides the basis for implementation in our code.

By defining the cell average

MK =
|K|
VK

N∑
k=1

wk
√
γkMk, (35)

we obtain the discrete equation for the cell average by multiplying Eq. (34) with wk
√
γk and summing

over all k

∂tMK = −
1

VK

d∑
i=1

N∑
k̃i=1

wk̃i

( √
γ(xi

H, x̃
i
k̃i

) F̂
i
(xi

H, x̃
i
k̃i

) −
√
γ(xi

L, x̃
i
k̃i

) F̂
i
(xi

L, x̃
i
k̃i

)
)
|K̃i| +GK + CK, (36)

where we have used
∑N

i=1 `i(η) = 1 and
∑N

i=1 ∂`i/∂η = 0. In the absence of sources, Eq. (36) is conservative.

This defines the spatial discretization of the moment equations.

4. TIME INTEGRATION

For time integration we employ the method of lines. Having specified the spatial discretization for the
advection terms and the representation of the collision terms, we consider the discretized moment equations
in Eq. (34) as a system of ordinary differential equations (ODEs) to evolve forward in time, and write

dtMk = F x(M)k + C(M)k ≡ L(M)k, (37)
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where the operator F x,C : Rd+1 → Rd+1 represents the discretization of the spatial divergence operator and
the collision operator modeling neutrino-matter interactions, respectively. (In the following, to simplify
notation, we drop the spatial subscript k, but note that a system of ODEs is to solved for each spatial point.)

4.1 EXPLICIT INTEGRATION SCHEME: SSP-RK METHODS

For non-stiff problems, we employ the strong stability-preserving Runge-Kutta (SSP-RK) methods [e.g.,
Gottlieb et al., 2001], which, for evolving the moments from tn to tn+1 = tn + ∆t (Mn

→M
n+1) using m

stages, take the general form

M
(0) =Mn, (38)

M
(i) =

i−1∑
k=0

αik
[
M

(k) + βik ∆tL(M(k))
]
, i = 1, . . . ,m (39)

M
n+1 =M(m). (40)

For second- and third-order temporal accuracy (denoted SSP-RK2 and SSP-RK3, respectively), the
coefficient matrices αik and βik are given in Table 2. Note that αik, βik ≥ 0 and

∑
k αik = 1 ∀i, so that the RK

stages in Eq. (39) are simply convex combinations of forward Euler steps with time step βik ∆t [Shu and
Osher, 1988].

Table 2. Optimal coefficients for SSP-RK Methods from Shu and Osher [1988]

SSP-RK2 αik βik SSP-RK3 αik βik

1 1 1 1
1/2 1/2 0 1 3/4 1/4 0 1

1/3 0 2/3 0 0 1

4.2 SEMI-IMPLICIT RUNGE-KUTTA METHODS

For stiff problems, the explicit methods in Section 4.1 impose a severe restriction on the time step for
numerical stability. In essence, the time step must be chosen small enough to resolve the collision time (the
time between subsequent neutrino-matter interactions), which is much shorter than the streaming time
(induced by F x) in regions of dense nuclear matter in a proto-neutron star.

To overcome this time step restriction, we integrate the collision term with implicit methods. Following
Chertock et al. [2015], we define the forward Euler stages in Eq. (39)

M
FE
ik =M(k) + βik ∆t

(
F x(M(k)) + C(M(k))

)
. (41)

The semi-implicit Runge-Kutta (SIRK) method is obtained by substitutingMFE
ik →M

SI
ik, whereMSI

ik is
obtained by solving the implicit equation

M
SI
ik =M(k) + βik ∆t

(
F x(M(k)) + C(MSI

ik)
)
. (42)

As discussed by Chertock et al. [2015], the time-integration method using Eq. (39), withMFE
ik replaced by

M
SI
ik, is at most first-order accurate in time. To increase the temporal accuracy to second order, Chertock
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et al. [2015] propose a correction step to be applied after the last stage. We defer the development of the
correction step [see, e.g. Endeve and Hauck, 2017], and use the first-order accurate time integrator for stiff
problems. We note that the SIRK method reduces to the SSP-RK methods in Section 4.1 when C = 0.

5. POLYNOMIAL LIMITING

During time integration we apply limiters that modify the polynomial representation in elements in order to
prevent development and growth of nonphysical oscillations (slope limiters; Sec. 5.1), or nonphysical states
(positivity limiters; Sec. 5.2).

5.1 SLOPE LIMITERS

For slope limiting, we introduce the modal expansion

MDG(x) =

N∑
i=1
C i φi(x), (43)

where {φi}
N
i=1 are elements of an orthogonal basis and C i are the corresponding expansion coefficients (not

to be confused with the collision term in Eq. (13)). Here, we let the orthogonal basis be constructed from
the tensor product of one-dimensional, normalized Legendre polynomials up to degree 3; i.e.,
{φk(η)}4k=1 = { 1, η, η2 − 1/12, η (η2 − 3/20) }. By orthogonality of the basis functions, the expansion
coefficients are easily obtained by projection of the nodal representation in Eq. (23) onto the modal basis in
Eq. (43); i.e.,

C i = 〈 φi, φi 〉
−1
K

N∑
j=1
〈 φi, ` j 〉KM j (44)

where
〈φi, φi〉K =

∫
K
φi(x) φi(x) dx and 〈φi, ` j〉K =

∫
K
φi(x) ` j(x) dx. (45)

The integrals in Eq. (45) can be computed exactly with a sufficiently accurate quadrature rule. The
projection is a linear transformation, and the projection matrix integrals can be computed once and stored
at program initialization. Also note that the projection matrix does not depend on the metric function, and
is therefore the same for all elements, which limits storage requirements.

The elements of the multidimensional modal basis are ordered by increasing polynomial degree; i.e.,

{φ1(η1)φ1(η2) . . . φ1(ηd), φ2(η1)φ1(η2) . . . φ1(ηd), φ1(η1)φ2(η2) . . . φ1(ηd), . . .}, (46)

so that the first expansion coefficient represents the average value ofM in K, C |0| = 〈M〉K (the coefficient
of the basis polynomial with total degree 0). The second expansion coefficient, C1

|1| (coefficient of the basis
function with total degree 1 varying in the first dimension), represents the first derivative ofM in the first
dimension, and so on.

The limiting procedure first computes, for each dimension i = 1, . . . , d, the limited slopes C̃
i
|1| by comparing

the variation within K, Ci
|1|, with the variation in the cell average by considering the neighboring elements

C̃
i
|1| = minmodB

(
C

i
|1|, β (〈M〉K − 〈M〉

i,−
K ), β (〈M〉i,+K − 〈M〉K)

)
, (47)
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where the limiter parameter β ∈ [1, 2] controls how aggressive limiting is applied. (β = 2 is the least
aggressive, and, in many cases, leads to the most accurate results.) The minmodB function is given by
Cockburn and Shu [2001] as

minmodB(a, b, c) =

{
a if |a| ≤ M ∆x2

minmod(a, b, c) otherwise,
(48)

and the usual minmod function is given by

minmod(a, b, c) =

{
s min[ |a|, |b|, |c| ] if s = sign(a) = sign(b) = sign(c)
0 otherwise.

(49)

In Eq. (48), the parameter M > 0 is proportional to the second derivative, and can be adjusted to prevent
clipping at smooth extrema. For M = 0, the minmodB functions reduces to the usual minmod function in
Eq. (49). In Eq. (47), 〈M〉i,−/+K is the cell average in the element to the left/right in the i-th dimension of the
element under consideration.

After computing the limited slopes in Eq. (47), they are compared with the original slopes. Then, if

|C̃
i
|1| − C

i
|1||/max

(
|C̃

i
|1||, |C

i
|1||

)
> tol, (50)

where we set tol = 10−2, we replace the modal expansion in Eq. (43) with the limited polynomial

MDG(x)→ M̃DG(x) = 〈M〉K +

d∑
i=1

C̃
i
|1| φ

i
|1|(x). (51)

We limit all the fields inM if the difference in any of the coefficients exceeds the tolerance. This limiting
procedure locally destroys the high-order accuracy of the DG method, but leads to non-oscillatory
evolution when sharp features are present in the solution. (In our implementation we apply the limiting to
characteristic variables, using the eigenvectors given in Appendix 8.3, which gives somewhat better results
near discontinuities.)

The limiting procedure described here operates on the coefficients of the modal expansion ofM, not that
of
√
γM. As a consequence, the average 〈M〉K is preserved in the limiting process, and not the average

given in Eq. (35), which defines the conserved quantities governed by the two-moment model in curvilinear
coordinates. (We have found that limiting a polynomial expansion of

√
γM leads to inaccurate results,

especially near coordinate singularities.) To enforce conservation, we therefore introduce a correction step,
similar in spirit to that discussed by Radice and Rezzolla [2011]. To this end we define
C̃ =

(
C |0|, C̃

1
|1|, . . . , C̃

d
|1|
)T and Ĉ =

(
Ĉ |0|, Ĉ

1
|1|, . . . , Ĉ

d
|1|
)T , and find Ĉ by solving

min
Ĉ

1
2
||C̃ − Ĉ||2 (52)

subject to the constraint

M̂K =
1

VK

∫
K
M̂DG

√
γ dx ≡MK. (53)

This linear equality-constrained least squares problem can be solved, e.g., using LAPACK’s DGGLSE
subroutine.
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Unfortunately, the minmod function in Eq. (49) can result in excessive dissipation around smooth extrema
and destroy high-order accuracy. The minmodB in Eq. (48) prevents this excessive dissipation, but
introduces the parameter M, which we have found to be difficult to adjust in order to obtain uniformly
acceptable results across all the numerical experiments presented later. To alleviate this dependence on the
parameter M, we have implemented a discontinuity detector based on the subcell resolution idea of Harten
[1989], following the description in Qiu and Shu [2005].

5.2 POSITIVITY LIMITERS

When solving the moment equations, we need to prevent non-physical states from developing. In
particular, from the definition of the moments in Eq. (4), it is easy to show that a positive distribution
function implies a positive density J > 0 and a limited flux density J − |H | > 0. Failure in maintaining
these bounds can lead to an ill-posed closure problem and loss of hyperbolicity for the moment equations.
In order to maintain these bounds we adopt the framework of Zhang and Shu [2010b], developed for the
Euler equations of gas dynamics [see also Zhang and Shu, 2010a, 2011, Olbrant et al., 2012]. The full
details of the application of this framework to the multi-dimensional two-moment method for radiation
transfer will be presented elsewhere [Endeve and Hauck, 2017]. We give only a brief description here. The
bound-preserving methodology introduces the realizable set

R =
{
M =

(
J ,H

)T
| J ≥ ε and γ(M) = J − |H | ≥ ε

}
, (54)

where ε is an arbitrarily small positive parameter. The realizable set in Eq. (54) is a convex cone [Olbrant
et al., 2012]. Key to the realizability-preserving (RP) scheme is to express the updated cell-averages of the
moments as positive combinations of elements in R. Realizability of the cell-average of the updated
moments is then guaranteed by convexity arguments. Sufficient conditions include: (i) the polynomial
representation of the moments are realizable in a finite set of quadrature points in each element K, and (ii)
the timestep ∆t is restricted by a CFL-like condition, which is somewhat stricter than that required for
stability.

Since the RP scheme only guarantees realizability of the cell-averages, polynomial limiting is needed after
each timestep (and after each stage in the Runge-Kutta method) to enforce realizability in the quadrature
points. This limiting procedure is similar to that described by Zhang and Shu [2010a] for the Euler
equations [see also Liu and Osher, 1996], and consists of two steps. First, if J < ε for any of the
quadrature points, we replace JDG → ĴDG, where the new polynomial representation is given by

ĴDG = θ1JDG + (1 − θ1)JK, (55)

where

θ1 = min
{
1,
JK − ε

JK − Jmin

}
, (56)

and Jmin is the minimum density in all the quadrature points. (Note that the limiting procedure is
conservative, since it leaves the cell average unchanged.) In the second step, we let M̂DG = (ĴDG,HDG)T.
Then, if M̂DG lies outside R for any quadrature point (i.e., γ(M̂DG) < ε), there exists an intersection point
of the straight line connectingMK ∈ R and M̂DG evaluated in the troubled quadrature point (denoted M̂q),
and the surface of R. Any point on this line is given by the convex combination
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sq(ξ) = (1 − ξ)MK + ξ M̂q, where ξ ∈ [0, 1], and the intersection point is obtained by solving the equation
γ(sq(ξ)) = ε for ξ. We then replace the polynomial representation M̂DG → M̃DG, where

M̃DG = θ2 M̂DG + (1 − θ2)MDG, (57)

and θ2 is the smallest ξ obtained in the element by considering all the troubled quadrature points.

6. NEUTRINO OPACITIES

To model neutrino-matter interactions, we have tabulated a basic — but important — set of neutrino
opacities for inclusion in simulations presented in Section 8.. We consider a single neutrino specie
(electron-type neutrinos), and include the relevant rates due to electron capture on nucleons and nuclei,
iso-energetic (elastic) scattering on nucleons and nuclei, and elastic neutrino-electron scattering (NES). For
completeness, we provide sufficient detail to arrive at the tabulated opacities relevant for the two-moment
model. For further details on the specific opacities we use, see Bruenn [1985], Mezzacappa and Bruenn
[1993a], and Mezzacappa and Bruenn [1993b].

As we mentioned in Section 2. when discussing Eqs. (2) and (3), the total opacity (excluding NES) is
κ(ε,U) = χ̃(ε,U) + σ(ε,U), where the absorption opacity χ̃(ε,U), corrected for stimulated absorption, is
given by the sum of the neutrino emissivity η(ε,U) and the neutrino absorptivity χ(ε,U)

χ̃(ε,U) = η(ε,U) + χ(ε,U). (58)

The scattering opacity σ(ε,U) is due to (isotropic) elastic scattering. Neutrino-electron scattering gives rise
to the integral operators involving the rates RIn(ε, ε′,U) and ROut(ε, ε′,U). (In the following, to simplify the
notation, we will drop the explicit spatial dependence and dependence on material properties U.) To arrive
at the collision terms for the two-moment model, we consider the space-homogeneous Boltzmann equation
[e.g., Eq. (7) in Mezzacappa and Bruenn, 1993b]

1
c

d f
dt

(ω, ε, t) = η(ε) − χ̃(ε) f (ω, ε, t)

+
ε2

c (hc)3

∫
S2

RIS(l′ · l, ε) f (ω′, ε, t) dω′ −
ε2

c (hc)3 f (ω, ε, t)
∫
S2

RIS(l′ · l, ε) dω′

+
1

c (hc)3

(
1 − f (ω, ε)

) ∫
R+

∫
S2

RIn
NES(l′ · l, ε, ε′) f (ω′, ε′, t) dε′ε′2 dω′

−
1

c (hc)3 f (ω, ε, t)
∫
R+

∫
S2

ROut
NES(l′ · l, ε, ε′)

(
1 − f (ω′, ε′, t)

)
dε′ε′2 dω′, (59)

where we have brought back physical constants; i.e., the speed of light c and the Planck constant h. In the
scattering kernels, l(ω) = (cosϑ, sinϑ cosϕ, sinϑ sinϕ)T, so that

l′ · l = µµ′ + [(1 − µ2)(1 − µ′2)]1/2 cos(ϕ − ϕ′) ≡ cosα, (µ = cosϑ) (60)

is the cosine of the angle between incoming and outgoing neutrino is the scattering process. In Eq. (59), the
first two terms are due to emission and absorption, the third and fourth terms are due to elastic
(isoenergetic) neutrino scattering on nucleons and nuclei, and the last two terms are due to inelastic
(non-isoenergetic) neutrino-electron scattering.
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In the following subsections we separately give the collision terms for the two-moment model by taking
angular moments of Eq. (59). (The total collision term in the two-moment model is then given by the sum
of the separate terms.) The opacities are computed using the SFHo equation of state [Steiner et al., 2013],
and tabulated for densities ρ ∈ [1.66 × 104, 3.16 × 1015] g cm−3, temperatures
T ∈ [1.16 × 109, 1.84 × 1012] K, and electron fractions Ye ∈ [0.01, 0.6]. The neutrino energies are in the
range ε ∈ [0.1, 300] MeV. We use logarithmic grids to cover the range in density Nρ = 308, temperature
(NT = 161), and the neutrino energy (Nε = 40), and a linear grid to cover the range in electron fraction
(NYe = 60). The neutrino electron scattering rates are tabulated in terms of neutrino energies (ε and ε′),
temperature, and η = µν/(kBT ). Here we use a logarithmic grid in η ∈ [1.0 × 10−8, 2.5 × 103] MeV, using
Nη = 100 points.

6.1 EMISSION AND ABSORPTION

Electron capture on nucleons and nuclei (p + e− 
 n + νe) is governed by the corrected absorption opacity
χ̃(ε)

χ̃(ε) = χ(ε) + η(ε), (61)

where η(ε) is the emissivity (taken as the sum of contributions from nucleons and nuclei)

η = ηnucleon + ηnuclei, (62)

and χ(ε) is the absorption opacity. They are related by equilibrium condition

χ(ε) = e(ε−µν)/kBT η(ε). (63)

Therefore,
χ = e(ε−µν)/kBT (ηnucleon + ηnuclei) ≡ χnucleon + χnuclei, (64)

and
η − χ̃ f = χ̃

(
η/χ̃ − f

)
= χ̃

(
f0 − f

)
. (65)

Thus, the corresponding terms in the moment equations are

1
c

dJ
dt

= χ̃
(
J0 − J

)
and

1
c

dH
dt

= −χ̃H . (66)

We use the electron neutrino nucleon absorption opacity χnucleon and emissivity ηnucleon as given by Eq. (C13)
and Eq. (C15), respectively, in Bruenn [1985], and the electron-neutrino nuclei absorption opacity χnuclei

and emissivity ηnuclei as given by Eq. (C29) and Eq. (C27), respectively, in Bruenn [1985]. We only tabulate
the corrected absorption opacity χ̃, which has units cm−1.

6.2 ELASTIC SCATTERING

The isoenergetic scattering kernel RIS(l′ · l, ε) is taken as the sum of contributions from scattering on
nucleons and nuclei

RIS(l′ · l, ε, ε) = Rnucleon
IS (l′ · l, ε) + Rnuclei

IS (l′ · l, ε), (67)
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where Rnucleon
IS and Rnuclei

IS are given by Eq. (35) and Eq. (36), respectively, in Mezzacappa and Bruenn
[1993a]. For inclusion in the two-moment model, these kernels are approximated by a two-term Legendre
series

RIS(cosα, ε) ≈
1
2

ΦIS,0(ε) +
3
2

ΦIS,1(ε) cosα. (68)

By orthogonality of the Legendre polynomials (P0(x) = 1, P1(x) = x), the expansion coefficients are given
by

ΦIS,`(ε) =

∫ +1

−1
RIS(cosα, ε) P`(cosα) d cosα (` = 0, 1). (69)

These integrals are performed numerically using a 20-point Gauss-Legendre quadrature rule. Inserting the
Legendre expansion into Eq. (59) and taking the angular moments gives no contribution to the equation for
J (energy conservation), while the contribution to the equation forH is

1
c

dH
dt

= −
(
σIS,0 − σIS,1

)
H , (70)

where we have defined

σIS,`(ε) =
2π ε2

c (hc)3 ΦIS,`(ε) (` = 0, 1). (71)

We tabulate the scattering opacities σIS,0 and σIS,1, which have units cm−1, but use only σIS,0 in the
numerical experiments in Section 8., where σ = σIS,0 in Eq. (3).

6.3 NEUTRINO-ELECTRON SCATTERING

The NES scattering kernel ROut
NES(cosα, ε, ε′) is given by Eq. (9) in Mezzacappa and Bruenn [1993b]. As we

did in the isoenergetic scattering case, we approximate the angular dependence of the scattering kernels by
a two-term Legendre expansion; e.g.,

ROut
NES(cosα, ε, ε′) ≈

1
2

ΦOut
NES,0(ε, ε′) +

3
2

ΦOut
NES,1(ε, ε′) cosα, (72)

where

ΦOut
NES,`(ε, ε

′) =

∫ +1

−1
ROut

NES(cosα, ε, ε′) P`(cosα) d cosα (` = 0, 1). (73)

(These integrals are computed numerically using a 30-point Gauss-Legendre quadrature. The in-scattering
kernels ΦIn

NES,`(ε, ε
′) are obtained from symmetry properties [Cernohorsky, 1994]

ΦIn
NES,`(ε, ε

′) = ΦOut
NES,`(ε

′, ε) and ΦOut
NES,`(ε

′, ε) = e−(ε−ε′)/kBT ΦOut
NES,`(ε, ε

′). (74)

Inserting the Legendre expansion into Eq. (59), and taking the zeroth moment (number equation), gives

1
c

dJ
dt

=
(

4π − J(ε)
) ∫
R+

RIn
NES,0(ε, ε′)J(ε′) dVε′ −H(ε) ·

∫
R+

RIn
NES,1(ε, ε′)H(ε′) dVε′

− J(ε)
∫
R+

ROut
NES,0(ε, ε′)

(
4π − J(ε′)

)
dVε′ +H(ε) ·

∫
R+

ROut
NES,1(ε, ε′)H(ε′) dVε′ . (75)
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Similarly, taking the first moment (number flux) of Eq. (59) results in

1
c

dH
dt

= −H(ε)
∫
R+

RIn
NES,0(ε, ε′)J(ε′) dVε′ +

(
(4π/3) I −K

)
·

∫
R+

RIn
NES,1(ε, ε′)H(ε′) dVε′

−H

∫
R+

ROut
NES,0(ε, ε′)

(
4π − J(ε′)

)
dVε′ +K ·

∫
R+

ROut
NES,1(ε, ε′)H(ε′) dVε′ , (76)

where we have defined

RIn/Out

NES,0(ε, ε′) =
1

c (hc)3

1
2

Φ
In/Out

NES,0(ε, ε′) and RIn/Out

NES,1(ε, ε′) =
1

c (hc)3

3
2

Φ
In/Out

NES,1(ε, ε′). (77)

We tabulate the scattering kernels ROut
NES,0 and ROut

NES,1, which have units MeV−3 cm−1, and obtain the

in-scattering rates from the symmetry properties in Eq. (74). We only use RIn/Out

NES,0 in the numerical

experiments in Section 8., so that RIn/Out = RIn/Out

NES,0 in Eqs. (2) and (3).

7. BASIC BENCHMARK PROBLEMS

We benchmark the DG implementation against a series of test problems. We will vary the degree k of the
polynomial representation used in DG method from 0 to 3, which we then denote DG(k). First we consider
test problems in the streaming limit. In this case we use the explicit SSP-RK time integrators described in
Section 4.1. The 2-stage and 3-stage methods are denoted SSP-RK2 and SSP-RK3, respectively. As an
example, an expected third-order accurate method (for problems with smooth solutions), using DG(2) and
SSP-RK3, will then be denoted DG(2)+RK3. For tests involving collisions we use the two-stage
Semi-Implicit Runge-Kutta method described in Section 4.2. When this time integrator is combined with
DG(k) spatial discretization, the method is denoted DG(k)+SIRK2.

7.1 STREAMING SINE WAVE

To measure the accuracy of the implementation using Cartesian coordinates, and to gauge the performance
of the DG scheme using different limiter parameters, we advect a sine wave across the one-dimensional,
periodic domain D = {x : x ∈ [0, 1]} ten times, until t = 10. We let the initial condition be given by

J(x, t = 0) = Hx(x, t = 0) = 1 + sin
(
2π x

)
. (78)

Results are shown in Figure 1 and Table 3. In Figure 1, results obtained using the TVD limiter (cf. Eq. (48)
with M = 0) with various β values are shown. With this limiter, the accuracy of the scheme is severely
compromised. The accuracy can be significantly improved with the TVB limiter (M > 0), but the proper
value for M is problem dependent, and difficult to set a priori. Instead, we have implemented the
discontinuity detector based on Harten’s subcell resolution method as a “troubled-cell” indicator [Harten,
1989, Qiu and Shu, 2005], which prevents limiting in smooth regions. Results using the detector (black
open circles) show a significant improvement. In Table 3 we list convergence results for this latter method,
which demonstrates high-order accuracy (i.e., better than second-order) when expected. Unless otherwise
noted, we continue to use the discontinuity detector in the remaining numerical experiments.
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Figure 1. Particle density versus position after ten grid crossings (t = 10) for the streaming sine wave
problem computed with the DG(2)+RK3 scheme using 16 elements. We compare results obtained using
various limiter parameters (open circles; see text for details) with the analytic solution (dotted line). Results
obtained using the discontinuity detector (D) is denoted with black open circles.

7.2 SPHERICAL WAVE

This problem in spherical symmetry is taken from Pons et al. [2000], and consists of a gaussian-shaped
wave propagating in the radial direction. The computational domain is given by D = {r : r ∈ [0.2, 10.2]}.
The analytical solution is given by

J(r, t) = Hr(r, t) = exp
[
−

(
r − t

)2]/r2. (79)

We let the boundary conditions be given by the analytical solution, and integrate in time from t = 0 to t = 7.

Snapshots of the solution (J versus r), obtained with the DG(2)+RK3 scheme, are shown in Figure 2 for
t = {2.5, 3.5, 5.0, 7.0} (open circles). For comparison, the analytical solution is plotted with dotted lines.
There is good agreement between the numerical and analytical solutions. In Table 4 we list convergence
results obtained with the various schemes. High-order accuracy is achieved with the DG(2)+RK3 and
DG(3)+RK3 schemes.
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Table 3. L∞ error and convergence rates for the streaming sine wave problem.
SSP-RK2 SSP-RK3

N DG(1) Rate DG(2) Rate DG(2) Rate DG(3) Rate

8 3.493 × 10−1 — 9.082 × 10−3 — 3.310 × 10−3 — 1.151 × 10−4 —
16 5.793 × 10−2 2.59 2.310 × 10−3 1.98 2.652 × 10−4 3.64 8.929 × 10−6 3.69
32 8.423 × 10−3 2.78 6.117 × 10−4 1.92 3.170 × 10−5 3.06 7.911 × 10−7 3.50
64 1.314 × 10−3 2.68 1.574 × 10−4 1.96 3.949 × 10−6 3.00 7.843 × 10−8 3.33

128 2.336 × 10−4 2.49 3.987 × 10−5 1.98 4.934 × 10−7 3.00 8.524 × 10−9 3.20
256 4.736 × 10−5 2.30 1.003 × 10−5 1.99 6.162 × 10−8 3.00 9.997 × 10−10 3.09

Table 4. L∞ error and convergence rates for the spherical wave problem.
SSP-RK2 SSP-RK3

N DG(1) Rate DG(2) Rate DG(2) Rate DG(3) Rate

32 4.648 × 10−4 — 5.540 × 10−5 — 4.803 × 10−5 — 1.707 × 10−5 —
64 9.506 × 10−5 2.29 1.088 × 10−5 2.35 1.373 × 10−5 1.81 7.812 × 10−7 4.45

128 1.996 × 10−5 2.25 1.502 × 10−6 2.86 1.836 × 10−6 2.90 1.150 × 10−7 2.76
256 5.783 × 10−6 1.79 2.529 × 10−7 2.57 1.895 × 10−7 3.28 6.268 × 10−9 4.20

7.3 LINE SOURCE

The line source benchmark [cf. Brunner, 2002, Garrett and Hauck, 2013] is a challenging test for
approximate transport algorithms. In cylindrical coordinates, it consists of an initial delta function particle
distribution in radius; i.e., f0 = δ(R)/4 π. For t > 0, a cylindrical radiation front propagates radially. Apart
from capturing details of the exact transport solution, maintaining realizability (M ∈ R cf. Eq. (54)) of the
two-moment solution is challenging.

This test is computed using cylindrical coordinates on a one-dimensional domain with R ∈ [0, 1.5]. To
avoid initiating the radiation field with the delta function, we follow the procedure in Garrett and Hauck
[2013], and approximate the initial condition with an isotropic Gaussian distribution function

fG,0 = max
[ 1

8 πσ2
G

e−R2/(2σ2
G), 10−4

]
, (80)

where we use σG = 0.03. We run this test to a final time t = 1.0.

In Figure 3 we plot the density J (left panel) and flux factor h = |H1|/J (right panel) for various times
during the evolution: t = 0.0 (red), t = 0.35 (green), t = 0.65 (blue), and t = 1.0 (black). The solid lines are
for a high-resolution reference solution obtained with the DG(1)+RK2 scheme using 2048 elements, while
the open circles are for a low resolution run using the DG(2)+RK3 scheme and 64 elements. There is good
agreement between the two solutions. When comparing the density J with the transport solutions in
Garrett and Hauck [2013], we observe that the peak of the radiation front reaches the correct location, but
otherwise, the two-moment model is not accurate for this problem. This is expected since a high number of
angular moments is needed to capture the transport solution. Despite the shortcomings of the two-moment
approximation, our implementation maintains J ≥ 0 and h ∈ [0, 1].
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Figure 2. Energy density versus radius at various times for the spherical wave problem computed
with the DG(2)+RK3 scheme using 32 elements. The numerical solution (open circles) is compared to
the analytical solution (dotted lines).

7.4 RIEMANN PROBLEM

To test the ability of the DG method to capture discontinuities without spurious oscillations, we solve the
Riemann problem presented by Olbrant et al. [2012]. This problem is also challenging because the
condition J − |H | > 0 can be violated. To compare with the results of Olbrant et al. [2012], we use the
Eddington factor due to Levermore [Levermore, 1984]

ψ(h) =
1
3
(

5 − 2
√

4 − 3 h2 )
. (81)

The computational domain extends from x = −0.05 to x = 0.1, and a discontinuity is located at xd = 0.0.
The initial condition is given by

M(x, t = 0) =

{
ML =

(
1, 0.9999, 0, 0

)T if x ≤ xd

MR =
(
0.5, 0, 0, 0

)T otherwise.
(82)

Results for t = 0.1 are shown in Figure 4. In the left panel we plot the number density and flux, obtained
with the third-order method (DG(2)+RK3). The discontinuities remain sharp, and oscillations around the
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Figure 3. Results from the line source problem with the two-moment model for various times. In the
left panel we plot the radiation density J . In the right panel we plot the flux factor h = |H1|/J . Solid lines
represent a high resolution (2048 elements) reference solution using the DG(1)+RK2 scheme, while circles
are results obtained with the DG(2)+RK3 scheme using 64 elements. Both solutions maintain the bounds
J > 0 and h ∈ [0, 1].

discontinuities are controlled (in part due to limiting of characteristic variables; cf. Section 5.1). In the
right panel we plot the number density for three computations: limiting triggered everywhere (blue), no
slope limiting (positivity limiting only; red), and limiting triggered by the discontinuity detector (black). In
the plot we have zoomed in on the discontinuity around x = 0.075. Without limiting, significant
oscillations are present in the solution. With the slope limiter, the oscillations are essentially removed,
while using the discontinuity detector to trigger limiting maintains a sharper discontinuity than when
limiting is permitted everywhere.

7.5 SPHERICAL DIFFUSION

Next, we consider a diffusion problem in spherical symmetry, which involves a constant scattering opacity
σ. This problem is adapted from Abdikamalov et al. [2012] [see also Pons et al., 2000, Sumiyoshi and
Yamada, 2012]. For sufficiently high scattering opacity, the moment equations limit to a diffusion equation
for the radiation number density. With a Gaussian initial distribution for the energy density
J0(x) = exp(−3σ r2/(4 t0)), the analytical solution to the limiting diffusion equation is given by

J(r, t) =
( t0
t0 + t

)3/2
exp

{
−

3σ r2

4 (t0 + t)

}
, (83)

while the number flux is obtained fromHr = −∂rJ/(3σ).

We present two versions of this test: one with σ = 10−5 cm−1 (thin test), and one with σ = 10−1 cm−1

(thick test). In the thin test, the computational domain extends over r ∈ [0, 100] km, t0 = 0.3 ms, and is run
until t = 1 ms. In the thick test, the computational domain extends over r ∈ [0, 50] km and t0 = 0.3 s, and is
run until t = 1 s. In both tests we use 32 elements and the DG(2)+SIRK2 scheme. With the mean-free path
defined as λ = 1/σ, the ratio of the mean-free path to the cell width ∆r is 0.32 in the thin test, and
6.4 × 10−5 in the thick test.
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Figure 4. Results from the one-dimensional Riemann problem in Eq. (82), obtained with the
DG(2)+RK3 method using 240 elements. The HLL Riemann solver and the Eddington factor in
Eq. (81) was used to obtain the results. The number density J (black) and the number flux density H1
(red) are plotted for t = 0.1.

Results are plotted in Figure 5. There is good agreement between the numerical and analytical solutions,
for both the thin and thick cases.

7.6 HOMOGENEOUS SPHERE

The homogeneous sphere test [cf. Smit et al., 1997] considers of a sphere with radius R. Inside the sphere
(r < R), the absorption opacity and equilibrium distribution function are set to constant values χ = χ0 and
f0 = 1, respectively. Outside the sphere, the absorption opacity is zero. The steady state solution, obtained
by solving the transport equation in spherical symmetry, is given by

fA(r, µ) = f0
(
1 − e−χ0 s(r,µ)), (84)

where

s(r, µ) =


r µ + R g(r, µ) if r < R, µ ∈ [−1,+1],
2 R g(r, µ) if r ≥ R, µ ∈ [(1 − (R/r)2)1/2,+1],
0 otherwise,

(85)

and g(r, µ) = [1 − (r/R)2(1 − µ2)]1/2.

Similar to O’Connor [2015], we solve two versions of this test: One where the absorption opacity is set to
χ0 = 10−4 cm−1 (thick; similar to the electron capture opacity encountered in the center of a collapsed
stellar core), and one where the absorption opacity is set to χ0 = 10−6 cm−1 (thin). Both simulations are run
with a computational domain with r ∈ [0, 500] km using 100 uniform elements ∆r = 5 km. Thus, in the
thick case, the Knudsen number is small, Kn = (χ0 ∆r)−1 = 0.02, while it exceeds unity in the thin case,
Kn = 2. The radius of the sphere is set to R = 100 km.

Results are plotted in Figure 6. In the left panels we plots results obtained for the thick case, while results
for the thin case are plotted in the right panels. We plot the radiation density J in the top panels, the flux

23



Figure 5. Results from the diffusion problem in spherical symmetry, obtained with the DG(2)+SIRK2
method using 32 elements. The number densityJ (left panel) and the number flux densityHr (right panel)
are plotted. In the upper panels σ = 10−5 cm−1, with results plotted for t = 0, 0.3, 1.0 ms (red, blue, and
black curves, respectively). In the lower panels σ = 10−1 cm−1, with results plotted for t = 0, 0.4, 1.0 s
(red, blue, and black curves, respectively). Solid lines represent the analytical solution while open circles
represent the element center value of the numerical solution.

factorHr/J in the middle panels, and the Eddington factor ψ in the bottom panels. The two-moment
model captures the analytic solution reasonably well in both the thin and the thick cases, especially for the
density J . The discrepancy in the flux and Eddington factors between the numerical results and the
analytical solution is comparable to that of other implementations of the two-moment model [e.g., Smit
et al., 1997].

7.7 MILNE’S PROBLEM

The Milne problem [see, e.g., Hummer and Rybicki, 1971, for details] considers isotropic radiation
emanating from a source with radius r = Rmin, propagating through a purely (elastic) scattering atmosphere
with an outer boundary at r = Rmax. Thus, the absorption opacity is zero χ̃ = 0, and the scattering opacity is
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given by a power law in radius
σ = r−n. (86)

Hummer and Rybicki [1971] computed steady-state solutions for n = 3/2, 2, and 3, and different values of
Rmax by solving the radiative transfer equation. Here we compare results obtained with the two-moment
model with solutions given by Hummer and Rybicki [1971].

With the scattering opacity in Eq. (86), the optical depth at radius r is given by

τ(r) =
1

n − 1
[
1/rn−1 − 1/Rn−1

max

]
. (87)

Hummer and Rybicki [1971] also provide asymptotic solutions for the energy density in the optically thick
and thin regimes, which we use to set initial values and boundary conditions when solving the two-moment
equations. In the optically thick regime (large τ), the asymptotic value for the energy density is

Jthick(r) =
3
r2

( n − 1
n + 1

)
[ τ + K ], (88)

where K is a constant. In the optically thin regime (small τ), the asymptotic value is

Jthin(r) =
1
r2 [ 1 + τ ]. (89)

Our initial condition for the energy density is then set as

J0(r) = (1 − e−τ(r))Jthick(r) + e−τ(r)Jthin(r), (90)

while the initial momentum density is set asHr,0(r) = 1/r2. These expressions are also used to set
boundary conditions, which are held fixed during the computations. (We use solutions provided by
Hummer and Rybicki [1971] in the thick regime to determine values for the constant K in Eq. (88).) With
the specified initial and boundary conditions, we evolve the moment equations until a steady state is
reached.

Results for various combinations of n and Rmax, obtained with the DG2+SIRK2 scheme, are plotted in
Figure 7. The radius of the inner boundary is Rmin = 0.01 in all the models. We use 64 elements for the
models with Rmax = 0.1, and 128 elements for the models with Rmax = 10, 30, and 100. The size of the
innermost (smallest) element is ∆r = 10−3, which increases geometrically with radius.

In the upper left panel in Figure 7, we plot J × r2 versus radius for n = 2, where Rmax = 0.1 (solid black
lines) and Rmax = 30 (solid blue lines). These results are compared with solutions given by Hummer and
Rybicki [1971] (black and blue boxes). We also plot the asymptotic values in the thick regime (dashed
lines), while the radius where τ = 1 is indicated with dotted vertical lines. The the two lower panels show
similar results using different values of n and Rmax. In the lower left panel we plot results for n = 3/2, with
Rmax = 0.1 (black lines) and Rmax = 100. In the lower right panel we plot results for n = 3, with Rmax = 0.1
(black lines) and Rmax = 10. In the upper right panel we plot flux factors (Hr/J , black lines) and Eddington
factors (ψ, blue lines) for a model with n = 2 and Rmax = 10, and compare with results given by Hummer
and Rybicki [1971] (their Table I; boxes). For this model, we computed results with the Minerbo closure
(cf. Eq. (10); solid lines) and the Levermore closure (cf. Eq. (81); dashed lines). As can be seen, there is
very little difference between the closure methods, but the results obtained with the Levermore closure are
somewhat closer to the results given by Hummer and Rybicki [1971].
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Overall, there is quite good agreement between the results obtained with the two-moment model and the
transport solutions of Hummer and Rybicki [1971] when Rmax/Rmin = 10. For larger values of this ratio, the
agreement is worse, but seems to improve with increasing value of the index n (cf. the blue lines in the
lower two panels in Figure 7).

8. MULTI-GROUP TRANSPORT PROBLEMS WITH TABULATED NEUTRINO OPACITIES

For the tests in this section we employ some of the tabulated opacities described in Section 6.. In
Section 8.2, we present a multi-group version of the homogeneous sphere test from Section 7.6, where the
background is kept fixed. In Section 8.3, we present a deleptonization problem where the initial
background density mimics that of a collapsed stellar core. The deleptonization problem uses the tabulated
electron capture and elastic scattering rates on nucleons and nuclei as described in Sections 6.1 and 6.2.
For this problem, the temperature and electron fraction of the background are evolved with the radiation
field as described in Section 8.1 below. The deleptonization problem is distributed with the mini-app,
available at https://github.com/ECP-Astro/thornado_mini.

When coupling neutrinos to the background fluid, the gain/loss terms involve integrals of the right-hand
sides in Eqs. (2) and (3) over energy space. To simulate multi-group neutrino transport and compute the
lepton and energy exchange with the fluid, the infinite energy domain R+ is replaced with a finite domain
Dε = {ε | ε ∈ [0, εmax]}. The domain Dε is then split up into Nε energy bins Kε

i = {ε | ε ∈ [εi−1/2, εi+1/2]},
where the width of the ith bin is |Kε

i | = (εi+1/2 − εi−1/2). Within each bin, we employ a polynomial
representation of the radiation fields and solve for nodal values collocated in Gaussian quadrature points.
The number of quadrature points N then increases with the degree k of the polynomial representation
(N = k + 1). Integrals of radiation quantities over energy space are then evaluated as

∫
R+

g(ε) dε ≈
∫

Dε

g(ε) dε =

Nε∑
i=1

∫
Kε

i

g(ε) dε ≈
Nε∑
i=1

|Kε
i |

N∑
q=1

wq gq =

Mε∑
j=1

W j g j = W · g, (91)

where wq are Gaussian quadrature weights (normalized such that
∑N

q=1 wq = 1) and Mε = Nε × N. In
constructing the vectors W, g ∈ RMε

, their elements are sorted with energy monotonically increasing with
j; e.g., ε j = εi−1/2 + |Ki| × (1/2 + ηεq) and W j = |Kε

i |wq, where ηεq is the Gaussian quadrature point on the
local reference element (ηε ∈ [−1/2, 1/2]), and j = (i − 1) × N + q, (i = 1, . . . ,Nε, q = 1, . . . ,N).

8.1 FLUID-RADIATION COUPLING

Electron capture on nucleons and nuclei results in changes to the electron fraction and internal energy of
the fluid given by

dtYe = −
mB

ρ

∫
R+

χ̃
(
J0 − J

)
dVε, (92)

dtε = −
1
ρ

∫
R+

χ̃
(
J0 − J

)
ε dVε, (93)
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where mB is the baryon mass and ε is the specific internal energy. In each implicit step in the SIRK2 scheme
discussed in Section 4.2 we solve Eqs. (92)-(93) coupled to the collision part of the moment equations.

Yn+1
e − Yn

e = −
mB

ρ

Mε∑
j=1

W (2)
j γn

j
(
Jn+1

0, j − J
n+1
j

)
, (94)

εn+1 − εn = −
1
ρ

Mε∑
j=1

W (3)
j γn

j
(
Jn+1

0, j − J
n+1
j

)
, (95)

where W (2,3)
j = wq ε

2,3
i,q ∆εi and γn

j = ∆t χ̃n
j . Note that the absorption opacity is defined at the known time

level tn, which avoids computation of derivatives with respect to temperature and electron fraction. The
radiation energy density is updated from

Jn+1
j =

Jn
j + γn

j J
n+1
0, j

1 + γn
j

, (96)

which, when inserted into Eqs. (94)-(95), results in a nonlinear system for the unknowns Yn+1 and εn+1

Yn+1
e − Yn

e = −
mB

ρ

Mε∑
j=1

W (2)
j γ̃n

j
(
Jn+1

0, j − J
n
j
)
, (97)

εn+1 − εn = −
1
ρ

Mε∑
j=1

W (3)
j γ̃n

j
(
Jn+1

0, j − J
n
j
)
, (98)

where γ̃n
j = γn

j/(1 + γn
j ). Since the equilibrium density J0, j is a nonlinear function of Ye and ε,

Eqs. (97)-(98) are solved using Newton’s method. Once Yn+1
e and εn+1 are obtained, the radiation density is

obtained from Eq. (96), while the flux is given by

H
n+1
j =Hn

j/(1 + γn
j ). (99)

When elastic scattering is included, the above description remains unchanged, except for γn
j → ∆t

(
χ̃n

j + σn
j
)

in Eq. (99).

Table 5. Parameters used for problems with tabulated opacities.
Model ρ [g cm−3] T [MeV] Ye µν [MeV]

A 1.0 × 1014 21.0 0.25 90.65
B 1.0 × 1013 16.0 0.14 4.80
C 1.0 × 1012 8.0 0.12 - 0.57
D 1.0 × 1011 8.0 0.15 - 10.87

8.2 HOMOGENEOUS SPHERE

Here we present results from a multi-group version of the homogeneous sphere problem in Section 7.6,
where we use the tabulated electron capture rates from Section 6.1. The radius of the sphere is set to
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R = 100 km, and the computational domain covers the region r ∈ [0, 500] km. We present two versions of
the test, one for dense conditions, where the ρ = 1013 g cm−3, T = 16 MeV, and Ye = 0.14 inside r = R
(Model B in Table 5), and one where ρ = 1011 g cm−3, T = 8 MeV, and Ye = 0.15 inside r = R (Model D in
Table 5). The electron capture rates χ̃ for these conditions are plotted versus energy ε in Figure 8 (blue and
magenta lines, respectively). Outside r = 100 km, we set ρ = 108 g cm−3, T = 0.2 MeV, and Ye = 0.46 in
both models.

Numerical results, obtained with the DG(2)+SIRK2 scheme using 100 equally sized radial elements and 24
geometrically spaced energy groups covering ε ∈ [0, 300] MeV (with a minimum energy bin ∆ε = 1 MeV),
are plotted in Figures 9 (Model B) and 10 (Model D). In the upper left panel we plot the average density
J/Vε, where

J =

∫
R+

J dVε and Vε =

∫
R+

dVε. (100)

In the lower left panel we plot the average flux factor, defined as

fr =
1
J

∫
R+

Hr dVε. (101)

In the upper right panel we plot the average Eddington factor, defined as

〈ψ〉 =
1
J

∫
R+

ψJ dVε. (102)

In the lower right panel we plot the mean energy

〈ε〉 =
1
J

∫
R+

J ε dVε. (103)

In each panel we compare the numerical and analytical results (dashed and solid lines, respectively). As
can be seen, the agreement between the numerical and analytical results is similar to that observed in
Section 7.6.

8.3 DELEPTONIZATION PROBLEM

We conclude with a problem mimicking deleptonization in a collapsed stellar core. To this end, we adopt
analytic profiles for the initial mass density, temperature, and electron fraction:

ρ(r) = 0.5 ×
{
ρmax ×

[
1 − tanh

(
(r − Rρ)/Hρ

) ]
+ ρmin ×

[
1 − tanh

(
(Rρ − r)/Hρ

) ] }
, (104)

T (r) = 0.5 ×
{
Tmax ×

[
1 − tanh

(
(r − RT )/HT

) ]
+ Tmin ×

[
1 − tanh

(
(RT − r)/HT

) ] }
, (105)

Ye(r) = 0.5 ×
{
Ye,min ×

[
1 − tanh

(
(r − RYe)/HYe

) ]
+ Ye,max ×

[
1 − tanh

(
(RYe − r)/HYe

) ] }
. (106)

For the density profile we set ρmin = 108 g cm−3, ρmax = 4 × 1014 g cm−3, Rρ = 20 km, and Hρ = 10 km.
Thus, the maximum density is consistent with nuclear matter, and neutrinos will be trapped. As the density
decreases with radius, the neutrino mean free path increases, and the neutrinos created by electron capture
will be able to escape the computational domain (deleptonization). For the temperature profile we set
Tmin = 5 × 109 K, Tmax = 2.6 × 1011 K, RT = 25 km, and HT = 20 km, while for the electron fraction profile
we set Ye,min = 0.4, Ye,max = 0.46, RYe = 45 km, and HYe = 10 km. (The initial temperature and electron
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fraction profiles are plotted as dotted lines in Figure 11.) The radiation field is initialized by setting the
distribution function equal to the local Fermi-Dirac distribution.

In this problem the computational domain covers r ∈ [0, 100] km and ε ∈ [0, 300] MeV. We use equally
sized spatial elements, while the energy domain is covered by geometrically increasing elements (with the
smallest, innermost, energy bin set to ∆ε = 1 MeV). We evolve until t = 100 ms.

In Figure 11 we plot fluid quantities versus radius at select times: t = 0 ms (the initial condition; dotted
lines), t = 3 ms (dash-dot), t = 10 ms (dashed), and t = 100 ms (solid). The results were obtained with the
DG(1)+SIRK2 scheme using 200 radial elements and 30 energy bins. We plot the electron fraction (upper
left panel); mass fractions of protons plus neutrons (black), alpha particles (red), and heavy nuclei (blue)
(upper right panel); temperature (lower left); and entropy per baryon (lower right).

In Figure 12 we plot radiation quantities versus radius at the same times as in Figure 11. We plot the
energy-integrated density J (upper left; cf. Eq. (100)), the average flux factor fr (upper right; cf. Eq. (101)),
and the mean energy 〈ε〉 (lower left; cf. Eq. (103)). In the lower right panel we plot the luminosity

Lr = 4π r2
∫
R+

Hr ε dVε. (107)

In these plots we have also indicated with vertical lines the radius where the optical depth,

τ(r) =

∫ r

∞

χ̃ dr, (108)

equals 2/3. (The line styles correspond to those of the various radiation quantities.)

The evolution in this test is driven by electron capture on protons (and the inverse process; i.e.,
e− + p� n + νe). For t > 0 the electron fraction begins to decrease in the region between r = 25 km and
r = 80 km, developing a characteristic “trough” in the Ye profile. The minimum is located around
r = 50 km early on, but moves out slightly at later times. The location of the minimum coincides
qualitatively with the radius where τ = 2/3 (Figure 12). The temperature and entropy per baryon responds
by increasing with time in the same region (consistent with heating). From the composition (determined by
the equation of state), we see that the material consists mostly of neutrons and protons inside r = 25 km
(with Xn ≈ 0.7 and Xp ≈ 0.3). For r > 80, the material consists mostly of heavy nuclei. Initially (t = 0),
there is a rather gradual transition from free nucleons to bound nuclei in the region between r = 25 km and
r = 80 km. At the end of the simulation, the transition from free nucleons to nuclei is rather sharp and has
moved out r ≈ 70 km. At this time, as a result of electron capture, the fluid consists mostly of neutrons in
the region between r = 35 km and r = 70 km (Xn ≈ 0.85 and Xp ≈ 0.15). Note that we do not include
electron anti-neutrinos, so there is no process to produce protons by positron capture on neutrons.

From plots of the radiation field in Figure 12, we see that the neutrinos are diffusive in the dense regions,
but transition to streaming at larger radii. The flux factor (upper right panel) is very small inside r = 40 km,
but increases monotonically with radius to about 0.9 at the outer boundary. In fact, the neutrino number
density (upper left panel) is essentially unchanged inside r = 25 km over the 100 ms the simulation covers.
At larger radii, the neutrinos are transported in the radial direction (cf. the luminosity in the lower right
panel), and the the neutrino number density profiles decrease with increasing time. The luminosity is
nearly constant in radius for r > 70 km, but decreases with time from about 600 B s−1 at t = 3 ms to about
40 B s−1 at t = 100. (1 B ≡ 1051 erg.)
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To test the sensitivity of the results to resolution, we compare some of the quantities from the reference
solution discussed above to results obtained with the DG(2)+SIRK2 scheme using 64 equally spaced
spatial elements and 12 geometrically spaced energy bins (but keeping the smallest energy bin at
∆ε = 1 MeV). (This represents a factor of ∼ 3.5 reduction in the total number of degrees of freedom.)
Results are plotted in Figure 13, where we plot the electron fraction (left panel) and the mean neutrino
energy (right panel) versus radius at t = 100 ms. The results from the reference solution (DG(1)+SIRK2)
are represented by solid black curves, while the DG(2)+SIRK2 results are represented by blue open circles.
For the electron fraction, the results are practically indistinguishable. The mean energy is underestimated
by the DG(2)+SIRK2 scheme inside r = 15 km. This is due to poor spectral resolution at high neutrino
energies. Outside r = 30 km, where the mean energy is lower, the agreement is very good.

9. SUMMARY

We have presented details of a numerical method for solving the multi-group, two-moment model for
neutrino transport. The discontinuous Galerkin (DG) method is used for spatial and energy discretization,
while a semi-implicit Runge-Kutta method is used for time integration, where the hyperbolic streaming
part is treated explicitly and the stiff terms modeling neutrino-matter interactions are treated implicitly. The
method can solve multi-group transport problems in Cartesian, spherical, and cylindrical coordinates in one
spatial dimension. We have demonstrated the accuracy of the method with a series of benchmark problems,
including smooth problems with analytical solutions, a Riemann problem, diffusion problems in thin and
thick regimes, and tests relevant to astrophysics covering both opaque and streaming regimes. We have also
detailed the tabulation of an initial set of neutrino-matter interactions (for electron neutrinos) relevant for
core-collapse supernova (CCSN) simulations. This initial set includes electron capture and elastic
scattering on nucleons and nuclei, and inelastic neutrino-electron scattering (NES). We have also presented
results from multi-group simulations that use these tabulated opacities. (Tests involving NES have been
deferred to so future publication.)

The algorithms are implemented in the Toolkit for High-Order Neutrino-Radiation Hydrodynamics
(thornado), and a limited version of the code has been made publicly available on GitHub†. This release
includes the deleptonization problem (including some of the data) presented in Section 8.3.

The current report details initial steps toward the longer-term goal of deploying high-order DG methods to
simulate CCSN explosions. Next steps for the near term include extension to multiple spatial dimensions,
inclusion of a larger suite of neutrino-matter interactions, and inclusion of multiple neutrino species (to
ultimately include electron, muon, and tau neutrinos, and the corresponding antiparticles). For the longer
term, extensions will include coupling to self-gravitating hydrodynamics, relativity, and special attention to
preservation of integration constants in neutrino-radiation hydrodynamics simulations.

†https://github.com/ECP-Astro/thornado_mini
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Figure 6. Results from solving the Homogeneous sphere problem with the DG(2)+SIRK2 method
using 100 elements. In the left panels, the absorption opacity is set to χ0 = 10−4 cm−1, while in the right
panels it is set to χ0 = 10−6 cm−1. The numerical results (dashed lines) are compared to the analytical
solution (solid lines).



Figure 7. Results of the Milne problem obtained with the two-moment model (solid lines), using the
DG(2)+SIRK2 scheme. The two-moment results are compared with solutions provided by [Hummer and
Rybicki, 1971] (boxes). See text for details.



Figure 8. Absorption opacities versus energy ε using values for ρ, T , and Ye listed in Table 5.



Figure 9. Results from solving the multi-group Homogeneous sphere problem with the DG(2)+SIRK2
method using 100 spatial elements and 24 energy groups. The material properties from Model B in
Table 5 are used to compute the neutrino absorption opacities. We plot the energy-averaged neutrino density
(upper left), flux factor (lower left), Eddington factor (upper right), and mean neutrino energy (lower right)
versus radius. The analytical solution is represented by the solid lines, while the numerical solution is given
by the dashed lines.



Figure 10. Same as Figure 9, but with properties from Model D in Table 5 to compute the opacities.



Figure 11. Fluid quantities from the deleptonization problem. Plotted versus radius for various times
are: electron fraction (top left), mass fractions of protons plus neutrons (black), alpha particles (red), and
the mean heavy nucleus (blue; top right), temperature (bottom left), and entropy per baryon (bottom right).



Figure 12. Radiation quantities from the deleptonization problem. Plotted versus radius for various
times are neutrino number density (top left), flux factor (top right), mean energy (bottom left), and luminos-
ity (bottom right). The radii where the optical depth τ = 2/3 are indicated with vertical lines.



Figure 13. Results for the deleptonization problem where the numerical resolution has been varied.
The electron fraction (left panel) and mean neutrino energy (right panel) are plotted versus radius for t =

100 ms. The black solid line is obtained with the DG(1)+SIRK2 scheme using Nr×Nε = 200×30 elements,
while blue open circles represent results obtained with the DG(2)+SIRK2 scheme using 64 × 12 elements.
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APPENDIX A. EIGENVALUES AND EIGENVECTORS FOR THE TWO-MOMENT
MODEL

Here we list eigenvalues and eigenvectors for the flux Jacobian associated with the hyperbolic system in
Eq. (13). These are used to perform limiting in characteristic variables (cf. Section 5.1). To this end, we
define the Eddington tensor

ki
j = K i

j/J , (109)

where K i
j is given by Eq. (9).

The flux Jacobian is given by

∂F i(M)
∂M

=


0 γi1 γi2 γi3

ki
1 +J

∂ki
1

∂J J
∂ki

1
∂H1

J
∂ki

1
∂H2

J
∂ki

1
∂H3

ki
2 +J

∂ki
2

∂J J
∂ki

2
∂H1

J
∂ki

2
∂H2

J
∂ki

2
∂H3

ki
3 +J

∂ki
3

∂J J
∂ki

3
∂H1

J
∂ki

3
∂H2

J
∂ki

3
∂H3


. (110)

We will need the derivatives

∂ψ

∂J
= −
H

J2

∂ψ

∂h
,

∂ψ

∂Hk
=

hk

J

∂ψ

∂h
,

∂hi

∂Hk
=

1
H

(
γik − hi hk )

, and
∂h j

∂Hk
=

1
H

(
δk

j − hk h j
)
. (111)

Then, we have

J
∂ki

j

∂J
=

1
2

[
δi

j − 3 hi h j
]
h
∂ψ

∂h
, (112)

and

J
∂ki

j

∂Hk
= −

1
2

[
δi

j − 3 hi h j
]
hk ∂ψ

∂h
+

1
2

(3ψ − 1)
[ (
γik h j + hi δk

j
)
− 2 hi hk h j

] 1
h
. (113)

Computing the flux Jacobian in the 1-dimension, using the metric tensor in Eq. (8), and simplifying by
setting h2, h3 = 0 so that h1h1 = 1, gives

∂F 1(M)
∂M

=


0 1 0 0

ψ − hψ′ h1 ψ′ 0 0
0 0 (3ψ−1) h1

2 h 0
0 0 0 (3ψ−1) h1

2 h

 , (114)

where ψ′ = ∂ψ/∂h. The characteristic polynomial is

p(λ) =
[
λ2 − h1 ψ′ λ −

(
ψ − hψ

)] [ (3ψ − 1) h1

2 h
− λ

]2
(115)

so that the eigenvalues are

λ = { λ1, λ2, λ3, λ4 } =
{ 1

2
(
h1 ψ′ +

√
∆
)
,

1
2

(
h1 ψ′ −

√
∆
)
,

(3ψ − 1) h1

2 h
,

(3ψ − 1) h1

2 h
}
, (116)

where ∆ = (ψ′ − 2 h)2 + 4(ψ − h2) [cf. Pons et al., 2000]. With the Eddington factor in Eq. (10), we have

ψ′(h) = 2 h
(

2 − h + 4 h2 )
/5. (117)
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We then have, as expected, λ(h = 0) = {
√

1/3, −
√

1/3, 0, 0 } (diffusion limit) and
λ(h = 1) = { h1, h1, h1, h1 } (streaming limit).

The corresponding eigenvectors are given by the columns and rows, respectively of the matrices

R1 =


1 1 0 0
λ1 λ2 0 0
0 0 1 0
0 0 0 1

 and L1 = (R1)−1 =


λ2/(λ2 − λ1) 1/(λ1 − λ2) 0 0
λ1/(λ1 − λ2) 1/(λ2 − λ1) 0 0

0 0 1 0
0 0 0 1

 . (118)
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APPENDIX B. MOMENT EQUATIONS IN COMMONLY USED COORDINATE
SYSTEMS

Here we provide explicit expressions for the hyperbolic part of the moment equations in cylindrical and
spherical polar coordinates.

10.1 CYLINDRICAL COORDINATES

Number conservation equation

∂J

∂t
+

1
R
∂

∂R

(
RH1

)
+
∂H2

∂z
+
∂H3

∂φ
= 0, (119)

number flux equation (R-component)

∂H1

∂t
+

1
R
∂

∂R

(
RK1

1

)
+
∂K2

1

∂z
+
∂K3

1

∂φ
=
K3

3

R
, (120)

number flux equation (z-component)

∂H2

∂t
+

1
R
∂

∂R

(
RK1

2

)
+
∂K2

2

∂z
+
∂K3

3

∂φ
= 0, (121)

and the number flux equation (φ-component)

∂H3

∂t
+

1
R
∂

∂R

(
RK1

3

)
+
∂K2

2

∂z
+
∂K3

3

∂φ
= 0. (122)

10.2 SPHERICAL COORDINATES

Number conservation equation

∂J

∂t
+

1
r2

∂

∂r

(
r2H1

)
+

1
sin θ

∂

∂θ

(
sin θH2

)
+

∂

∂φ

(
H3

)
= 0, (123)

number flux equation (r-component)

∂H1

∂t
+

1
r2

∂

∂r

(
r2K1

1

)
+

1
sin θ

∂

∂θ

(
sin θK2

1

)
+
∂K3

1

∂φ
=

(
K2

2 +K3
3
)1
r
, (124)

number flux equation (θ-component)

∂H2

∂t
+

1
r2

∂

∂r

(
r2K1

2

)
+

1
sin θ

∂

∂θ

(
sin θK2

2

)
+
∂K3

2

∂φ
= K3

3 cot θ, (125)

number flux equation (φ-component)

∂H3

∂t
+

1
r2

∂

∂r

(
r2K1

3

)
+

1
sin θ

∂

∂θ

(
sin θK2

3

)
+
∂K3

3

∂φ
= 0. (126)
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